Search results for " Invariant manifold"

showing 6 items of 6 documents

On invariant manifolds of saddle points for 3D multistable models

2017

In dynamical systems a particular solution is completely determined by the parameters considered and the initial conditions. Indeed, when the model shows a multistability, starting from different initial state, the trajectories can evolve towards different attractors. The invariant manifolds of the saddle points separate the vector field into the basins of attraction of different stable equilibria. The aim of this work is the reconstruction of these separation surfaces in order to know in advance the geometry of the basins. In this paper three-dimensional models with three or more stable fixed points is investigated. To this purpose a procedure for the detection of the scattered data lying …

Settore MAT/08 - Analisi NumericaDynamical systems Invariant manifolds Separatrix Meshfree method Moving Least Squares.
researchProduct

Detecting tri‐stability of 3D models with complex attractors via meshfree reconstruction of invariant manifolds of saddle points

2018

In mathematical modeling it is often required the analysis of the vector field topology in order to predict the evolution of the variables involved. When a dynamical system is multi-stable the trajectories approach different stable states, depending on the initialmconditions. The aim of this work is the detection of the invariant manifolds of thesaddle points to analyze the boundaries of the basins of attraction. Once that a sufficient number of separatrix points is found a Moving Least Squares meshfree method is involved to reconstruct the separatrix manifolds. Numerical results are presented to assess the method referring to tri-stable models with complex attractors such as limit cycles o…

Dynamical systems Invariant manifolds Separatrix Meshfree method Moving Least Squares.Dynamical systems theorySeparatrixGeneral MathematicsMathematical analysisGeneral Engineering3d model010103 numerical & computational mathematics01 natural sciences010101 applied mathematicsSettore MAT/08 - Analisi NumericaSaddle pointAttractor0101 mathematicsMoving least squaresInvariant (mathematics)MathematicsMathematical Methods in the Applied Sciences
researchProduct

Nodal Solutions for Supercritical Laplace Equations

2015

In this paper we study radial solutions for the following equation $$\Delta u(x)+f (u(x), |x|) = 0,$$ where $${x \in {\mathbb{R}^{n}}}$$ , n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent $${2^{*} = \frac{2n}{n-2}}$$ . The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular gro…

Laplace transform010102 general mathematicsMathematical analysisInvariant manifoldStatistical and Nonlinear Physicsradial solutionLaplace equations radial solutions regular/singular ground state Fowler inversion invariant manifoldLaplace equation01 natural sciencesSupercritical fluidinvariant manifold.010101 applied mathematicsSobolev spaceregular/singular ground stateTransformation (function)Structural stabilityFowler inversion0101 mathematicsGround stateCritical exponentMathematical PhysicsMathematicsMathematical physics
researchProduct

Multiplicity of ground states for the scalar curvature equation

2019

We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…

Multiplicity resultsBubble tower solutions; Fowler transformation; Ground states; Invariant manifold; Multiplicity results; Phase plane analysis; Scalar curvature equation; Shooting methodGround stateMultiplicity resultsInvariant manifoldScalar curvature equation01 natural sciencesBubble tower solutionsCombinatoricsSettore MAT/05 - Analisi Matematica0103 physical sciencesinvariant manifoldground stateScalar curvature equation Ground states Fowler transformation Invariant manifold Shooting method Bubble tower solutions Phase plane analysis Multiplicity resultsFowler transformationMultiplicity result0101 mathematicsphase plane analysiPhase plane analysisPhysicsApplied Mathematics010102 general mathematicsscalar curvature equationShooting methodMultiplicity (mathematics)shooting methodPhase plane analysiGround statesBubble tower solutionbubble tower solutionmultiplicity results.Phase plane analysis010307 mathematical physicsInvariant manifoldScalar curvature
researchProduct

Multiplicity of Radial Ground States for the Scalar Curvature Equation Without Reciprocal Symmetry

2022

AbstractWe study existence and multiplicity of positive ground states for the scalar curvature equation $$\begin{aligned} \varDelta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n\,, \quad n>2, \end{aligned}$$ Δ u + K ( | x | ) u n + 2 n - 2 = 0 , x ∈ R n , n > 2 , when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ K : R + → R + is bounded above and below by two positive constants, i.e. $$0<\underline{K} \le K(r) \le \overline{K}$$ 0 < K ̲ ≤ K ( r ) ≤ K ¯ for every $$r > 0$$ r > 0 , it is decreasing in $$(0,{{{\mathcal {R}}}})$$ ( 0 , R ) and increasing in $$({{{\mathcal {R}}}},+\infty )$$ ( R , + ∞ ) for a certain $${{{\mathcal {R}}}}&g…

Multiplicity resultsGround state010102 general mathematicsMultiplicity (mathematics)Scalar curvature equation01 natural sciencesPhase plane analysiGround statesBubble tower solutions010101 applied mathematicsCombinatoricsSettore MAT/05 - Analisi MatematicaBubble tower solutionFowler transformationScalar curvature equation; Ground states; Fowler transformation; Invariant manifold; Bubble tower solutions; Phase plane analysis; Multiplicity resultsMultiplicity result0101 mathematicsNon-perturbativeInvariant manifoldGround stateAnalysisReciprocalPhase plane analysisScalar curvatureMathematicsJournal of Dynamics and Differential Equations
researchProduct

Broglie and Young, visionaries who shed light in the polar topology that grounds our reality: a hypothesis

2020

Una observación matemática que relaciona los patrones fractales y la operación de convolución en el contexto del procesamiento de imágenes digitales interrumpió una investigación que nos lleva a plantear la hipótesis de que el concepto de onda de materia (o dualidad onda-partícula) se encuentra en la dicotomía entre el par débil y un topología fuerte en el ámbito del marco de atractores singulares continuos en ninguna parte diferenciables y el concepto de fotón-solitón de Vigier. Tal inferencia parece ser más evidente en la interpretación de Broglie-Bohm de la mecánica cuántica en el cruce de características locales x globales. De esto se deduce también que la relación de los fenómenos natu…

staircase functionsreproducing kernelnormally hyperbolic invariant manifoldsnormal topologyUNESCO::FÍSICAtotal variation filteringconvergence of power seriessmall-divisorssurface of controlevel-set methods:FÍSICA [UNESCO]lebesgue-cantor measurearithmetic physicsinteracting ieldperturbation theory
researchProduct